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1. INTRODUCTION

Let G EM(~ + ), the class of complex-valued functions measurable on (0,
et:)), be a nonnegative function satisfying the following properties:

(i) G(u) is continuous at u= 1,

(ii) for each 0> 0, II lb,I G II 00 < G(l), and

(iii) there exist (}t> (}2 > 0 such that (u -01 + U02) G(u) is bounded and
is in M(~ +).

Here lb x denotes the characteristic function of the set (0, et:) )
(x-o,x+o).

Such a function G is called (for our purpose) an "admissible" kernel
function. The set of all admissible kernel functions will be denoted by
T(~ +).

Let G E T(IR +), (X E IR, Je, x E IR + and IE M(IR +). We define

x~ 1
100T~(f;x)= a(Je) 0 u-~/(u)G~(xu-l)du,

where,

a(Je) = J
o

oo
u"-2G~(u)du,

whenever, the above integrals exist, (1.1) defines a class of linear positive
operators.

Let Q (> 1) be a continuous function defined on IR +. We call Q a
bounding function for aGE T(IR +), if for each compact K c IR +, there
exist positive numbers Je K and M K such that

Th(Q;x)<MK , xEK. (1.2)

* Present address: Department of Applied Sciences, Institute of Engineering & Technology,
Post Bag-I, Aliganj Extension, P.O. Lucknow-226020, India.

173
0021·9045/85 $3.00

640/44/2-6 Copyrighl © 1985 by Academic Press. Inc.
All rights of reproduction in any form reserved.



174 B. KUNWAR

Clearly, for G E T(~ +), Q(u) = u - p + uq is a bounding function. The
notion of a bounding function [11] enables us to obtain results in a
uniform set-up, which, at the same time, are applicable for a general
GE T(~+).

For a bounding function Q, we define

D Q = {f f is locally integrable on (0, 00 )

and If(u)1 ::::;MQ(u), UE(O, oo)}.

Several well-known operators, such as Gamma operators of Muller
[10], modified Post-Widder operators [8], Post-Widder operators [14],
the operators studied in [9], etc., are particular cases of the class TA• This
can be verified by choosing G, Aand IX suitably [6].

We use TA, whose construction, as we will see in Section 2, depends only
on the functional values on ~ +, for approximating a class of analytic
functions in complex-plane. The results can also be regarded as providing
us new analytic continuation methods. In this direction, we mention the
works of Kantarovich [4] and Bernstein [7], who obtained results on con
vergence of Bernstein polynomials in the complex domain, by making an
ingenious use of the Legendre's polynomials. Similar results for the Szasz
operators were obtained by Gergen et of. [3] by using Lagurre's
polynomials. Other results in this direction have been obtained in
[1,5,15].

We make use of the Cauchy's theorem to obtain the results on the
approximation-theoretic properties of TA in the complex-domain.

2. SOME MORE DEFINITIONS AND AUXILIARY RESULTS

We give some more definitions and auxiliary results.
Let G E T( ~ + ) be an analytic function, regular in the angle

A 'P = {z = re ili
: r > 0, 0::::; 8 < P},

and the property that for each 0 < 80 < P there exist 81 , 82 > 0 such that
g(r, 8) = (r -III + r 1l2 ) G(re ill

) is bounded on the set

A(80 ) = {(r, 8): 0 < 8 < 80 , r > O}.

Let Q be a bounding function for G E T( ~ +) satisfying the following
requirements.

For every compact subset K c A'P there exist positive constants AK , M K

such that
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In the above situation, we say that GETtp(1R +) and that Q is a '1'
bounding function for G. It follows from the Riemann-Schwarz reflection
principle [13, p. 155], that if GET '1'( IR + ) and Q is a 'P-bounding function
for G, then the above mentioned properties continue to hold in the reflec
tion of Atp, A(Oo) and K, respectively, through the real axis.

If j is an analytic function such that for 0 < () < 'I' the limits

lim sup I j(ueio)I/Q(u)
u~o+ 0<0<00

and

lim sup I j(ueio)I/Q(u)
u~oo 0<0<00

exist, we say thatjED%.
If jE D%, GETtp(1R + ) and Q is 'P-bounding function then, it is obvious

that given compact subset K of Atp, T;, (f z) exists and defines an analytic
function regular in K, for Asufficiently large.

Now, we give some auxiliary results useful for further developments.

LEMMA 2.1. If G E T( IR +), then

(2.1 )

Proof Let 6 > 0 be arbitrarily fixed. Then we can choose a b > 0 so
small that in view of the property (ii) of G

(2.2)

Let m = II XJ,1 G II 00' Since there exists a ,1.0' such that a(A) exists for all
A> ,1.0' we have

roo rnJ.-Ail
G-J.(I) J

o
u"-2GJ.(U) XJ,I(U) du< GJ.(I) a(Ao)·

Since, by the property (ii) of G, rn < G(I) there exists a AI such that for
A>A I ,

(2.3)

Combining (2.2), (2.3) we have O<a(A)G-J.(I)<6 for A>A 1 • But 6 is
arbitrary, so (2.1) follows.
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LEMMA 2.2. Let G E T(IR +) and Q be a bounding function for G. If
0< () < a< b < 00 andfED{J' then

uniformly in x E [a, b], for any k E IR + .

Proof We have

(2.4)

Let O<{)<a:::;;x:::;;b< 00. We choose 11E(O, 1) such that b<<5((I/11)-I).
We have then,

x b
--:::;;--<1-11
x+{) b+{)

and
x b
--~--~1+n
x - () "" b - () "" '/'

Using these inequalities and 1f(u)1 :::;; MQ(u), u E (0, (0), we find that

Let Al be such that TAJQ;x):::;;MI for XE [a, b] we have then for A>AI ,

ITA(fXo.x: x)l :::;;:~A;I [f~~+{:J u"~2Q(XU-l) GAI(u) du,

where m~ =max{G(u): u:::;; 1 11 or u~ 1+1'/}. We have then

mA- AI foo
IT;,(fXo,x;x)l:::;; a().) 0 u"-2Q(XU~I)GA1(u)du

~a(Ad A-AIT (A. )
"" a(A) m~ Al :.~, X

mA- AI
:::;;Mla(A 1 ) a(A) ,

for all A> Al and x E [a, b]. Since G is continuous at 1, we can find
CE(O, 11)(oq<l) and e>O,

G(u) ~ (m~ + e) for U E (1- c, 1 + c).
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f
1+C

~ (m~+ 1»;' U,,-2 duo
1-c
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the lemma follows.

Remark. The definition of Do can be replaced by a slightly more
general one,

Do = {J:fis locally integrable, lim (f(u)jQ(u)) < 00 and

lim (f(u)jQ(u)) < oo}.
u-o

Next, we state the following basic approximation theorem whose proof
follows from Lemma 2.1 and Lemma 2.2.

THEOREM 2.1. Let G E T(~ +) and Q be a bounding function for G If
fED 0 is continuous at a point x E ~ +, there holds

lim Tif; x) = f(x).
;.- 00

(2.5)

Further, iff is continuous on a open interval containing the closed interval
[a, b], (2.5) holds uniformly in XE [a, b].

3. CONVERGENCE IN THE COMPLEX DoMAIN

In this section we study the convergence of the operators T;. in the com
plex domain. In the following theorem, we establish the convergence of T;.f
for zEAtp and fE D'/; and regular in the interior of the set Atp, A~.
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THEOREM 3.1. Let GE T'I'(IR +), Q be a If'-bounding function for G and
fE Dr; be regular in A~. Then

lim T;.(f; z) =f(z),
;.~ 00

(3.1 )

uniformly on each compact subset of A '1"

Proof The proof of the theorem contains the following intermediate
lemma:

LEMMA 3.1. IfG E T'I'(IR +), Q is a If'-bounding function for G andfE Dr;
is regular in A'I', then for each z E A 'I' there holds T;.(f; z) = T;.(Fz ; Iz I) for
all A. sufficiently large, where F z = f(u exp i arg z).

Proofof the Lemma 3.1. If z E IR +, the result is trivial. Hence we assume
that z E A 'P\IR +.

Let r denote the boundary of the subset D= {(r, O)EA(argz):
r0 ~ r ~ Ro} of A'I', where r0 and Ro are positive numbers. It follows from
Cauchy's theorem that

a-I:,-f w-af(w)G;'(zw-')dw=O. (3.2)
a(lI.) r

In view of the regularity of fED r;, there exists a positive constant M
such that 1f( w)1 < MQ( 1wi) if 0 < arg w ~ arg z. Hence if C denotes one of
the two arcs of r,

I:~~; Ie w-af(w) G\zw-
I
) dwl

~MI:~:~I Ie1wl-aQ(IWI)1 G;'(zw-')lldwl (3.3)

~MoM(A.o) sup IG(ZW-I)I'"-.l.o,
a(A.) WE C

for some positive constants M o and A.o. Since GET'I'(IR+), supw",c
IG(zw-I)I-+O as ro-+O and Ro-+ 00. It follows that if A. > A.o,

(3.4)

which is just the· relation TAf; z) = T.l.(Fz; 1z I). This completes the proof of
the Lemma 3.1.
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Continuing the proof of the Theorem :U, we observe that Fz(u)eD'f; and
that it is continuous on R+ , Since Fz( IzI) 1:!I#l/(z), in view of Lemma 3.1 and
Theorem:U. we have lim)! ....~ T;.{.f;z)=f(z), for each ZE:A~. Moreover.
the convergence is mmorm on eaCh closed seple1lt of the rayR", =
{z= re i'4'. r>O} (O~4l< 'P).

Now let K be any compact subset of A. 'P" It is clear that f{ can be
enclosed in a region of tj'PC D considered in the proof of I.emma 3,1, In
view of the uniform convergence of 1'"t(;z) on closed segments of R4'
(O<4'i<Y7). for aU sufficiently large 1, T4(};z) is uniformly bounded on
the linear segments of I: Thus the proofol Theorem 3.1 follows from
Vitali's convergell'Ce thoo~ [13. p.16Sj pfO¥ided we are able to establish
uniform boundedness of T;'{I; z) for aU Asufficiently large and z belonging
to the two arcs of I:

Let z be on one of these ares. Then!e Dl; and is regular in A.,. for Some
At> '0 independent of z, we have

ITAU;z)1 =" T;.(Fz ; Izn~MT:l{.a; IzD.

for an 1. suft'iclently large,
Applying Theorem 2,1 to tbe function a the required uniform oounded~

ness follows for all 1 sufficiently large. This completes the proof of
Theorem 3.1.

In Theorem 3.1, fnas been assumed to be regular in A~, The question
arises as to what happens iff has certain singularities in A~. We consider
this problem when/has a single isolated singularity in A~. In this case, it
turns out that the convergence (3.1) ,may not hold thrnughoui: A~, and our
interest lies in determining a subset ofA~ on which the convergence takes
place.

Let GeT;y(~+). We define

11;= {zeA91~ IG(z)1 <G(l)}.

and denote the~ {az: z: e ",1"}~ a is a romplex number" by M~. It is clear
that R + \ {i}c:: J'1~.

THEoREM 3.2• .Let Ger~(R+) (J be a lJI..boonding!un,tion/or G lind
feD~.l.ffis replar in A'I"e.xceptforan is~atedsingukfrit)' w~ in A;"" there
/rQfds
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Proof Let K be a compact subset of A~- woA~. Let Cr denote a circle
with centre at Wo and radius r > 0, We can choose r so small such that Cr

does not interest A~-woA~. If we define F(w)=f(w) for w lying outside
or on Cr and F(w)=O inside Cr and choose (Jo such that KcA((Jo), there
exists an M I > 0 such that

for all 0 < (J ~ (Jo.

Let z E K. Then, following the proof of Lemma 3.1, we have

ITA(f; z) - TA(F(u exp i arg z); 1z I)
Izl~-l

~-;;v:) Ie, Iwl-~ If(w)IIG(zw-1W Idwl· (3.5)

Since K is compact, there exists a positive number p such that
IG(zw-1)1 <G(I)-2p, for each ZEK and WECr' Hence, there exists a
constant M 2 such that

I T),(f; z) - TAF(UE exp i arg z); 1z 1)1

M2 A
~a(A) (G(I)-2p) , (3.6)

for all z E K. The right-hand side of this inequality approaches zero as
A-+ 00. For, we can find a 15E(O, 1) such that G(u)~G(I)-p for all
UE (1- 15,1 + 15) and then,

(3.7)

It follows that TA(f; s) - TA(F(u exp i arg z); 1z I) converges uniformly to
zero for z E K.

Let a=min{lzl:zEK}, b=max{lzl:ZEK}. Now, ITAF(uexpiargz);
Iz 1)1 ~ M I TA(Q; Iz I), and in view of Theorem 2.1, the latter is uniformly
bounded for a ~ Iz I~ b, and for all A sufficiently large.

It follows that TA(f; z) is uniformly bounded for z E K and all A suf
ficiently large. But, again by Theorem 2.1, TA(F(uexpiargz); Izl)-+f(z)
(zEK) as A-+OO and hence also TA(f;z)-+f(z) (zEK) as A-+OO. Now
Vitali's convergence theorem is applicable and the proof of the theorem is
complete.

Finally, we show that the region A~- woA~ obtained in Theorem 3.2 is
best possible, in a certain ·sence.

. THEOREM 3.3. Let GETop(1R + ), Q be a 'P-bounding function for G, and
woEA~. Then there exists afunctionfED'/{ whose only singularity in A~ is
Wo andfor which TA(f;z) diverges for each zEwoA~- {wo}.
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Proof The function f(z) = (z - wo) -I E D~ for each 'l'-bounding
function for G. Also, if Z E woA~- {woL arg z > arg woo Hence by Cauchy's
theorem, as in the proof of Lemma 3.1, we have

(3.8)

where Cr is as in the proof of Theorem 3.2, with r sufficiently small. By the
residue theorem,

T).(f; z)= T-.((u exp i arg z WO)-I; Izl)

2ni -(% A 1+a(..1.) Wo G (ZWO ). (3.9)

In view of Theorem 2.1, the first term on the right-hand side of (3.9) con
verges to (Z-WO)-l. But, since zEwoA~, IG(zwo1)I>G(1). In view of
Lemma 2.1, it follows that T).(f; z) diverges as 2 -+ 00. This completes the
proof of the theorem.
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